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Abstract 2/20

The talk presents the Edge Equilibrium Code (EEC), which is a new solver of the Grad-Shafranov equation
complementing the existing ESC code (based on Fourier repre sentation). EEC, being developed specif-
ically for the near edge region with an arbitrary shape of the plasma boundary, uses adaptive flux coor-
dinates with Hermite finite element representation. A speci al routine for fast solving the sparse matrix
equations was created for EEC.

The edge solution of EEC is matched with the core solution fro m ESC through a virtual boundary and
the two codes communicate as two parallel processes. This ap proach addresses the future needs in
enhancing functionality of EEC without conflicting with the interface of both codes. The CodeBuilder (Cb),
which maintains the documentation and the source code consi stent with each other, was used for the code
development.

The resulting ESC-EEC code system acquired unmatched abili ty (a) in fast free and fixed boundary equilib-
rium calculations for arbitrary plasma shapes, (b) in using both r − z and different flux coordinates, (c)
in choosing different combinations of input profiles, (d) in performing equilibrium reconstruction together
with variances analysis, and (e) in assessing the diagnosti cs used for equilibrium reconstruction.

PPP
PRINCETON
PLASMA PHYSICS
LABORATORY

PPP
PRINCETON
PLASMA PHYSICS
LABORATORY

THEORY
PPPLXujing Li, PPPL Theory Seminar, May 30, 2013, PPPL, Princeton NJ



Contents 3/20

1 Introduction to equilibrium problems 4
2 Edge Equilibrium Code 7

2.1 Hermite finite elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Adaptive grid of EEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Block tri-diagonal matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Cholesky decomposition scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Verification using exact solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Examples of EAST equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Examples of NSTX equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 High-beta in NSTX with a separatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.9 Examples of ITER equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Summary 20

PPP
PRINCETON
PLASMA PHYSICS
LABORATORY

PPP
PRINCETON
PLASMA PHYSICS
LABORATORY

THEORY
PPPLXujing Li, PPPL Theory Seminar, May 30, 2013, PPPL, Princeton NJ



1 Introduction to equilibrium problems 4/20

Looking as a very primitive problem, the tokamak equilibrium is absolutely essential for
magnetic fusion by giving the background information about magnetic configuration.

For tokamaks Grad-Shafranov (GSh) equation

∆∗Ψ̄ = −r2P (Ψ̄) − T (~Ψ), Ψ̄ ≡
Ψ

2π
, P ≡

dµ0p

dΨ̄
, T ≡ F̄

dF̄

dΨ̄
, F̄ ≡ rBtor (1.1)

describes well the real plasma, rather than its theoretical models.

The use of flux coordinates a, θ (Ψ̄ = Ψ̄(a)) is critical for high temperature plasma.
Laboratory r, z or other u, v coordinates cannot provide the necessary accuracy.

The practical problems for tokamak equilibria can be listed as

a, θ r, z or laboratory u, v

Fixed simple boundary, P, T as the RHS perfect not accurate
Fixed simple boundary, arbitrary RHS perfect bad
Fixed boundary with X-points problematic not accurate
Free boundary problematic good for plasma control
Equilibrium reconstruction problematic limited justification
Variances analysis perfect (ESC) not performed
Real time forecast of plasma discharge perfect (ESC) not suitable

PPP
PRINCETON
PLASMA PHYSICS
LABORATORY

PPP
PRINCETON
PLASMA PHYSICS
LABORATORY

THEORY
PPPLXujing Li, PPPL Theory Seminar, May 30, 2013, PPPL, Princeton NJ



ESC and its capacities 5/20

ESC is the only existing code addressing all listed problems

Solves the linearized GSh equation

Ψ̄ = Ψ̄0 + ψ̃, ∆∗Ψ̄ + r2
dP

dΨ̄0

ψ̃ +
dT

dΨ̄0

ψ̃ = −r2P − T (1.2)

by special shooting technique. Used a simple Fourier repres entation

r = r0 +
∑

rme
imθ, z = z0 − b sin θ, Ψ̄ = Ψ̄0 +

∑

Ψ̄me
imθ. (1.3)

Automatically provides information about linearized axisy mmetric perturbations neces-
sary for vertical stability analysis.

a, θ

Fixed simple boundary 6 choices of a
Fixed simple boundary, arbitrary RHS ≃ 20 combinations of plasma profiles
Fixed boundary with X-points analytical BL
Free boundary interacting a, θ and r, z solvers

X-points ignored in a, θ solver
Equilibrium reconstruction Ψ̄i, Bi, MSE-LP, MSE-LS, Faraday rotation

transport profiles as signals
First reconstructions Plasma with the current holes (JET)

Response function technique (CDX-U)
Variances analysis Unique
Real time forecast of plasma discharge ESC-ASTRA is the prototype of RTF
needed for EAST (fast equilibrium at every time step)
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Needs in EEC 6/20

For the separatrix limited plasma ESC incorporates a virtua l boundary, separating the
core and the boundary layer.

Z0 PlVac

R0    2     4     6     8
   -6

   -4
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    0

    2

    4

    6

I=0

I=0

I=0

I=0

I=0
Virtual boundary

For the core: Fourier representation of
r(a, θ), z(a, θ), Ψ̄(a, θ).

For the edge: analytical model.

At the virtual boundary: Ψ̄, Bpol are continuous.

The objective of EEC: the replacement of analytical
model by a finite element solution

ITER equilibrium

EEC has to be able to solve the GSh equation for arbitrary mixt ure of Dirichlet and Neu-
mann boundary conditions. Physics needs Neumann boundary c onditions.

The next steps will involve linking ESC-EEC with the plasma s urface current and shell
codes for simulation of Hiro currents and vertical disrupti ons in tokamaks.
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2 Edge Equilibrium Code 7/20

The tokamak Grad-Shafranov (GSh) equilibrium equation

∆∗Ψ̄ ≡ r
∂

∂r

(
1

r

∂Ψ̄

∂r

)

+
∂2Ψ̄

∂z2
= −r2

dp̄

dΨ̄
− F̄

dF̄

dΨ̄
(2.1)

can be obtained from the energy principle

W =
1

2

∫ {
|∇Ψ̄|2

r2
− 2p̄(Ψ̄) −

F̄ 2(Ψ̄)

r2

}

dxdydz. (2.2)

In toroidal coordinates a, θ, φ

r = r(a, θ), z = z(a, θ), D ≡
D(r, z)

D(a, θ)
, Ψ̄ = Ψ̄(a, θ), (2.3)

the W functional has the form

W =
1

2

∫ {
gθθ

rD
Ψ̄′2
a − 2

gaθ

rD
Ψ̄′
aΨ̄

′
θ +

gaa

rD
Ψ̄′2
θ − 2rDp̄(Ψ̄) −

D

r
F̄ 2(Ψ̄)

}

dadθ, (2.4)

which can be used for finite element numerical schemes.

PPP
PRINCETON
PLASMA PHYSICS
LABORATORY

PPP
PRINCETON
PLASMA PHYSICS
LABORATORY

THEORY
PPPLXujing Li, PPPL Theory Seminar, May 30, 2013, PPPL, Princeton NJ



2.1 Hermite finite elements 8/20

Physics needs knowledge of functions and their first derivat ives.

This naturally determines the use of Hermite finite elements on the grid a, θ:

1. Values of Ψ̄ and its first derivatives Ψ̄′
a, Ψ̄

′
θ (together with Ψ̄′′

aθ) in vertices are obtained
explicitly as the solution of discrete equations;

2. Smooth continuous representation of the solution is provid ed (necessary for grid-
less interfaces);

3. Simplicity of interconnection with neighboring elements o n rectangular a, θ grids,
resulting in well structured tri-diagonal matrix equations .

Ψ̄ =

j<16
∑

j=0

V j(a, θ)Yj, Ψ̄′
a =

j<16
∑

j=0

V ′j
a Yj, Ψ̄′

θ =

j<16
∑

j=0

V
′j
θ Yj (2.5)

where V j(a, θ) are bicubic spline basis functions, and

~Y =
{
Ψ̄00, Ψ̄

′
a00, Ψ̄

′
θ00, Ψ̄

′′
aθ00, Ψ̄10, Ψ̄

′
a10, Ψ̄

′
θ10, Ψ̄

′′
aθ10,

Ψ̄11, Ψ̄
′
a11, Ψ̄

′
θ11, Ψ̄

′′
aθ11, Ψ̄01, Ψ̄

′
a01, Ψ̄

′
θ01, Ψ̄

′′
aθ01

} (2.6)
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2.2 Adaptive grid of EEC 9/20

The initial grid for EEC is typically taken from ESC with modifi cation of θ = const lines
by straight lines.

z GridBL

r    4     5     6     7     8

   -2

    0

    2

    4 The coordinates a, θ are introduced through Hermite finite
elements as well

~r ≡ {r, z} , ~r =

j<16
∑

j=0

V j(a, θ)~Rj,

~r′a =

j<16
∑

j=0

V ′j
a
~Rj, ~r′θ =

j<16
∑

j=0

V
′j
θ
~Rj

(2.7)

where
~RT =

{
~r00, ~r

′
a00, ~r

′
θ00, ~r

′′
aθ00, ~r10, ~r

′
a10, ~r

′
θ10, ~r

′′
aθ10,

~r11, ~r
′
a11, ~r

′
θ11, ~r

′′
aθ11, ~r01, ~r

′
a01, ~r

′
θ01, ~r

′′
aθ01

} (2.8)

This provides consistency in approximations of r, z

and Ψ̄

Grid in a “thick” boundary layer

The grid adaptation toward Ψ̄ = const surfaces is implemented as a Newton scheme

Ψ̄(a, θ) ≡ Ψ̄0(a) + ψ̃, ξ = −
ψ̃

Ψ̄′
0

, r → r + r′aξ + r′θσ, z → z + z′aξ + z′θσ, (2.9)

where σ provides straight lines of θ = const.
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2.3 Block tri-diagonal matrix 10/20

For both 2- and 3-D cases, the matrix resulting from W can be reduced
to a block-tri-diagonal cycle matrix by appropriate enumer ation.

2-D structure of the matrices

A0

A1

A2

︸︷︷︸
M︸ ︷︷ ︸

1. The elementary tokens for 2-D case are 4x4 matri-
ces. For 3-D case with Ψ̄, Φ̄ unknown, they would
be (2x8)x(2x8) matrices;

2. Then, these tokens compose a tri-diagonal M ×
M matrices, with M equal to the number of radial
a vertexes;

3. Then, these radial matrices compose a periodic
tri-diagonal N × N matrix, corresponding to the
poloidal coordinate θ.

4. In the 3-D case, these poloidal matrices would
compose a periodic tri-diagonal L×Lmatrix, cor-
responding to the toroidal angle φ.

N of Ms

Block-tri-diagonal algorithm was implemented as a first sol ver of matrix equation. It works
well.
Still, the tri-diagonal structure of elementary matrices is lo st in the process of their inversion.
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2.4 Cholesky decomposition scheme 11/20

Fast Cholesky decomposition scheme was developed to utiliz e the special structure of
the matrix

A0

A1

A2

=
L

×

LT

The block-band structure of Cholesky matrices. Light blues r epresent zeros

After decomposition the resulting band matrices can be used f or many RHS of equations.

Use of the CodeBuilder was critical for the development of an efficient Cholesky routine,
which has a sophisticated logic of pointers.
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2.5 Verification using exact solutions 12/20

Numerical solution was tested against analytical solutions of the GSh operator

∆∗Ψ̄ = −r̄

with different combinations of Dirichlet and Neumann bounda ry conditions

Exact polynomial homogeneous solutions to the GSh equation w ere generated as

Y ′′
rr −

1

r
Y ′
r + Y ′′

zz = r

(
Y ′
r

r

)′

r

+ Y ′′
zz = 0,

Y m
even =

k<m∑

k=0

ckr
2(m−k)z2k, ck+1 = −ck

2(m− k)(m − k − 1)

(k + 1)(2k + 1)
,

Y m+1
odd =

k<m∑

k=0

skr
2(m−k)z2k+1, sk+1 = −sk

2(m− k)(m − k − 1)

(k + 1)(2k + 3)
.

(2.10)

Similarly, the polynomial solutions were generated with a po lynomial RHS.
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Test examples with different ̄ 6= 0 13/20

OpenGL color graphics was used for debugging
and verification of EEC

With M ×N = 12 × 64 grid covering 0.5 of the
minor radius the accuracy 10−5 was typical for
all combinations of boundary conditions.
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Typical homogeneous solutions, ̄ = 0 14/20

m=0 m=1

m=2 m=3
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2.6 Examples of EAST equilibria 15/20

Conventional tokamak configuration: R = 2 m, a = 0.5 m
Z0 PlVac
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β = 0.5% β = 1% β = 2% β = 2.5%
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PPP
PRINCETON
PLASMA PHYSICS
LABORATORY

PPP
PRINCETON
PLASMA PHYSICS
LABORATORY

THEORY
PPPLXujing Li, PPPL Theory Seminar, May 30, 2013, PPPL, Princeton NJ



2.7 Examples of NSTX equilibria 16/20

Small aspect ratio tokamak configuration: R = 0.88 m, a = 0.65 m
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β = 4% β = 8% β = 12% β = 16%
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High-beta, bigger view 17/20

Z0 PlVac
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With β ≃ 30% the finite elements
at the low field side of the plasma
edge become narrower than the
plot line.

EEC still works !
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2.8 High-beta in NSTX with a separatrix 18/20

Small aspect ratio tokamak configuration: R = 0.88 m, a = 0.65 m
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β = 4% β = 8% β = 12% β = 16%
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2.9 Examples of ITER equilibria 19/20

Low triangularity case
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High triangularity case
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3 Summary 20/20

The ESC-EEC code system has been created for addressing major e quilibrium problems

1. Several grid generators for Hermite finite elements are dev eloped for plasma edge
region in curvilinear coordinates;

2. All combinations of Dirichlet and Neumann boundary condi tions are implemented;

3. Special matching conditions across finite elements at the X-point are implemented;

4. Fast solver of tri-diagonal matrix equations was develop ed;

5. The numerical scheme was validated against exact solutio ns;

6. The core equilibrium code ESC was interfaced with EEC usin g

(a) I/O files;
(b) Sheared memory;
(c) MPI;
(d) Sockets.

The architecture of ESC-EEC as two independent communicati ng codes addresses the
difficult problem of code maintenance and their further unco nflicting development.

ESC-EEC (+ASTRA) gives a practical approach to integration of numerical codes
when people with different background contribute efficientl y to the code system.
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